

www.ijirid.in

ISSN (Online): 2583-648X

 IJIRID
International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 6 | December 2024

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This
license allows refusers to distribute, remix, adapt, and build upon the material in any medium or format for non-
commercial purposes only, and only so long as attribution is given to the creator. Any further distribution of this
work must maintain attribution to the creators. © copyright at IJIRID. DOI 10.5281/zenodo.14832680 646

A Review on a Cloud-Native Application using Serverless

Functions

Ashish Narkhede1, Prof. Pallavi P. Rane2, Prof. Pravin S. Rane3, Prof. Nilesh N. Shingne4

1Postgraduate Student, Rajarshi Shahu College of Engineering, Buldhana, (M.S), India

2,3Assistant Professor, Rajarshi Shahu College of Engineering, Buldhana, (M.S), India
4Assistant Professor, CS&IT, Sanmati Engineering College Washim, (M.S), India

Abstract: The emergence of cloud-native computing has revolutionized application development by

enabling scalable, cost-efficient, and flexible solutions. This study focuses on the design and

implementation of a cloud-native application using serverless functions, an architecture that

eliminates the need for server management while optimizing resource utilization. The application

leverages Function-as-a-Service (FaaS) platforms to dynamically execute discrete, event-driven

functions in response to user and system actions. Key components include API gateways for

seamless client interaction, event triggers for real-time processing, and scalable databases for

efficient data storage. The proposed design emphasizes modularity, enabling easier updates and

maintenance, and ensures high availability by leveraging distributed cloud infrastructure. Security

measures, such as identity and access management (IAM) and encrypted data transmission, are

integrated to safeguard the application. The implementation is validated through performance

benchmarking, highlighting reduced latency and cost-effectiveness compared to traditional

monolithic or microservices architectures. This work demonstrates the potential of serverless

computing in accelerating development cycles and supporting modern, resilient cloud-native

applications across various domains. [3].

Keywords: Cloud, Serverless, Real-Time, Data Storage, Security.

I. INTRODUCTION

Serverless functions, also known as Function-as-a-Service (FaaS), are a type of cloud computing service

that allows developers to build and run applications without managing the underlying infrastructure.

These functions are event-driven and only execute in response to specific events or triggers, such as

an HTTP request, a file upload, or a database update. [4]Designing serverless functions requires a shift

in perspective compared to traditional monolithic applications. Serverless functions should be concise,

focused, and stateless, with a clear, singular purpose. The following best practices can aid in

developing effective serverless functions:

• Single Responsibility: Each function should perform a specific, well-defined task, promoting

modularity, reusability, and easier maintenance.

• Statelessness: Functions should not retain any state between executions. Any necessary state

should be stored externally, such as in databases or object storage.

• Input/ Output Contracts: Functions must have clear input and output definitions, specifying the

expected data structure and format. This ensures smooth interaction and function composition

across services.

http://www.ijirid.in/

www.ijirid.in

ISSN (Online): 2583-648X

 IJIRID
International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 6 | December 2024

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This
license allows refusers to distribute, remix, adapt, and build upon the material in any medium or format for non-
commercial purposes only, and only so long as attribution is given to the creator. Any further distribution of this
work must maintain attribution to the creators. © copyright at IJIRID. DOI 10.5281/zenodo.14832680 647

• Idempotency: Functions should be designed to ensure that multiple executions with the same

input yield identical results. This ensures data consistency and makes it easier to handle retries

during failures.

• Timeouts and Resource Limits: Functions should be configured with appropriate timeouts and

resource limits to prevent long-running or resource-heavy tasks from affecting system

performance. [5].

II. PROJECT OBJECTIVES

• To Design applications that automatically scale based on demand without manual intervention

or resource provisioning.

• To Optimize resource usage by executing code only when necessary, paying only for the actual

compute time used.

• To Accelerate development by allowing developers to focus on writing code rather than

managing infrastructure.

III. LITERATURE REVIEW

The advent of cloud computing has caused a sea shift in the app development life cycle. Cloud

computing has come a long way, with traditional models like Infrastructure-as-a-Service (Iaas) and

Platform-as-a-Service (Pass) allowing businesses to tap into computer resources whenever they need

them [1].

A new server-less computing concept has arisen to solve these problems by removing the need to

maintain the underlying infrastructure [2]. Developers develop and deploy individual functions in a

server-less architecture. Events or requests trigger these functions. In response to changes in demand,

the cloud service provider automatically scales up or down the resources used to carry out these tasks.

Without worrying about server provisioning, scalability, or maintenance, developers can concentrate

entirely on building code and providing business value by utilizing this strategy. [2]

Data management in server-less systems requires a distinct strategy compared to conventional

designs. Functions that do not rely on servers cannot maintain permanent connections to storage

services or databases because they are stateless and have a limited execution period. Instead,

information needs to be kept in third-party services designed to handle server-less access patterns.

[3].

IV. MOTIVATION

Serverless functions eliminate the need for developers to manage servers, reducing the operational

burden associated with infrastructure provisioning, scaling, and maintenance. This allows developers

to focus solely on writing business logic, streamlining the development process. Serverless computing

operates on a pay-as-you-go model, where you only pay for the resources used during function

execution. This makes it a cost-effective solution for handling variable workloads. There is no need to

maintain idle servers, which further optimizes costs by scaling resources dynamically. Serverless

functions can automatically scale based on demand.

http://www.ijirid.in/

www.ijirid.in

ISSN (Online): 2583-648X

 IJIRID
International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 6 | December 2024

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This
license allows refusers to distribute, remix, adapt, and build upon the material in any medium or format for non-
commercial purposes only, and only so long as attribution is given to the creator. Any further distribution of this
work must maintain attribution to the creators. © copyright at IJIRID. DOI 10.5281/zenodo.14832680 648

This means they can easily handle both low and high volumes of traffic without requiring manual

intervention or reconfiguration. The cloud provider takes care of scaling resources to meet the

application's needs, making it ideal for fluctuating workloads. Serverless architecture accelerates

application development by simplifying infrastructure management.

Developers can deploy code faster, experiment with different components, and make changes

without worrying about the underlying infrastructure. This results in quicker prototyping and faster

product launches. Serverless design allows developers to focus purely on business logic, without

getting bogged down by concerns such as infrastructure setup, capacity planning, or server

maintenance. This ensures more innovation and agility in developing applications. [6]

V. PROPOSED METHODOLOGY

Serverless functions operate within an event-driven architecture, where cloud providers manage

infrastructure, allowing developers to focus solely on writing business logic. These functions are

lightweight, short-lived, and triggered by specific events. Below is an explanation of how serverless

functions operate:

• Function Deployment: Developers write small functions that handle tasks such as data

processing, interacting with databases, or calling APIs. These functions are uploaded to a

serverless platform (e.g., AWS Lambda, Azure Functions, or Google Cloud Functions), where they

are stored and ready to be executed.

• Event Triggering: Serverless functions are activated by events. These events can include:

o An HTTP request (e.g., a REST API call)

o A change in cloud storage (e.g., uploading a file to a storage bucket)

o A message added to a queue (e.g., a new task in a job queue)

o A scheduled task (e.g., running a function at a set time or interval)

The cloud provider monitors these events and triggers the corresponding serverless function

when an event occurs.

• Function Execution: Once an event is detected, the cloud provider automatically allocates

resources to execute the function. This allocation occurs on-demand, meaning no resources are

used unless the function is triggered. The function runs its logic and may interact with cloud

services like databases, storage, or external APIs. Serverless functions are stateless, meaning they

don’t retain any data or context between invocations. If the function needs to store persistent

data (e.g., user sessions or database records), external services like databases or object storage

are used. [7]

• Scaling: Serverless functions automatically scale to accommodate the number of incoming

requests or events. If there is an increase in traffic or events, new instances of the function are

created to handle the load. If the traffic decreases, the cloud provider scales down the instances,

http://www.ijirid.in/

www.ijirid.in

ISSN (Online): 2583-648X

 IJIRID
International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 6 | December 2024

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This
license allows refusers to distribute, remix, adapt, and build upon the material in any medium or format for non-
commercial purposes only, and only so long as attribution is given to the creator. Any further distribution of this
work must maintain attribution to the creators. © copyright at IJIRID. DOI 10.5281/zenodo.14832680 649

possibly terminating them if no further events are triggered. This scaling process is elastic and

requires no manual intervention.

• Execution Time and Resource Management: Serverless functions are designed to execute

quickly, typically within milliseconds or seconds. Platforms impose execution time limits (e.g.,

AWS Lambda limits execution to 15 minutes). If the function runs too long, it is terminated.

Developers can define resource limits such as memory allocation and maximum execution

duration to ensure efficient use of resources.

• Cold Start: When a serverless function is invoked for the first time or after a period of inactivity,

it may experience a cold start. During a cold start, the platform needs to initialize resources and

load the function’s runtime environment, which can cause slight delays. Once the function has

run once, it remains "warm" for subsequent invocations, reducing the latency caused by cold

starts.

• Response and Termination: After execution, the function returns a response, such as JSON,

HTML, or other data formats, based on the task it performed. Once the function completes its

job, it terminates, and the cloud provider automatically releases the allocated resources. The

platform handles the management and cleanup of these resources. [8]

Figure 1: Flow of the Proposed System

VI. SERVERLESS FUNCTIONS RESEARCH AREA AND IT’S IMPORTANCE

Serverless functions, also known as Function as a Service (FaaS), offer a cloud computing model where

developers run functions without managing the underlying infrastructure. This paradigm opens up

diverse research areas, including:

http://www.ijirid.in/

www.ijirid.in

ISSN (Online): 2583-648X

 IJIRID
International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 6 | December 2024

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This
license allows refusers to distribute, remix, adapt, and build upon the material in any medium or format for non-
commercial purposes only, and only so long as attribution is given to the creator. Any further distribution of this
work must maintain attribution to the creators. © copyright at IJIRID. DOI 10.5281/zenodo.14832680 650

6.1. Scalability and Performance Optimization

• Cold Start Latency: Research on reducing the delay during function initialization.

• Auto-scaling Algorithms: Efficient scaling of functions to handle variable loads dynamically.

• Concurrency Handling: Optimizing simultaneous execution of serverless functions.

6.2. Security and Privacy

• Data Isolation: Ensuring secure multi-tenancy and preventing data leaks across functions.

• Access Control: Implementing secure mechanisms for function invocation.

• Threat Detection: Protecting against DDoS attacks or malicious invocations.

6.3. Cost Optimization

• Resource Management: Researching optimal allocation of compute and memory resources to

minimize cost.

• Function Placement Strategies: Studying functions across cloud regions for cost-effectiveness.

• Pricing Models: Developing new cost models to incentivize efficient serverless usage.

6.4. Application Design and Workflow Optimization

• Workflow Orchestration: Efficient chaining and parallel execution of serverless functions.

• State Management: Handling state in inherently stateless serverless environments.

• Event-Driven Architectures: Optimizing event-driven systems for high responsiveness.

6.5. Integration with Emerging Technologies

• AI/ML Workloads: Exploring serverless frameworks for running ML models efficiently.

• IoT Integration: Optimizing serverless functions for Internet of Things (IoT) ecosystems.

• Quantum Computing: Leveraging serverless models for executing quantum algorithms.

6.6. Developer Productivity

• Programming Models: Simplifying development with high-level abstractions and SDKs.

• Debugging and Testing: Tools and methodologies for debugging serverless applications.

• Observability: Enhancing monitoring and tracing for serverless environments.

6.7. Hybrid and Multi-Cloud Deployments

• Interoperability: Enabling serverless functions across different cloud providers seamlessly.

• Edge Computing Integration: Researching serverless functions at edge locations for low latency.

• Data Residency Compliance: Ensuring legal and regulatory compliance in multi-cloud setups.

6.8. Energy Efficiency and Sustainability

• Green Computing: Optimizing serverless functions to reduce energy consumption.

• Carbon Footprint Analysis: Minimizing the environmental impact of serverless infrastructures.

http://www.ijirid.in/

www.ijirid.in

ISSN (Online): 2583-648X

 IJIRID
International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 6 | December 2024

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This
license allows refusers to distribute, remix, adapt, and build upon the material in any medium or format for non-
commercial purposes only, and only so long as attribution is given to the creator. Any further distribution of this
work must maintain attribution to the creators. © copyright at IJIRID. DOI 10.5281/zenodo.14832680 651

6.9. Serverless for Specialized Domains

• Real-Time Applications: Researching serverless applicability for real-time use cases like gaming or

financial trading.

• Healthcare Systems: Exploring serverless in managing healthcare workflows and patient data

securely.

• Big Data Processing: Investigating serverless as a viable model for large-scale data analytics. [10].

VII. BENEFITS

Serverless functions offer several benefits that make them an attractive choice for cloud-native

applications and microservices architectures. Some of the key benefits include:

• Cost Efficiency: Serverless computing follows a pay-as-you-go pricing model, where you only pay

for the actual compute time your function consumes. This means you are not charged for idle

time, reducing operational costs significantly, especially for workloads with varying or

unpredictable usage patterns.

• Automatic Scaling: Serverless functions automatically scale up or down based on demand. The

cloud provider adjusts the number of function instances to handle increased or decreased

workloads, ensuring that resources are used efficiently without manual intervention.

• Simplified Infrastructure Management: Serverless functions abstract away the need for

developers to manage the underlying infrastructure. Developers do not need to worry about

provisioning, maintaining, or scaling servers, allowing them to focus entirely on writing business

logic and improving application functionality.

• Quick Deployment and Iteration: Serverless platforms enable faster development and

deployment. Developers can push code changes without dealing with infrastructure

configurations, making it easier to deploy updates, test new features, and iterate on the

application quickly.

• High Availability and Reliability: Serverless functions are typically designed with built-in fault

tolerance. They are deployed across multiple availability zones, ensuring high availability and

redundancy. If one instance of the function fails, another is automatically launched to handle

requests, ensuring minimal downtime.

• Event-Driven Architecture: Serverless functions are triggered by events (such as HTTP requests,

database changes, or file uploads), making them ideal for event-driven applications. This

architecture is especially useful for real-time data processing, automation tasks, and

microservices communication.

http://www.ijirid.in/

www.ijirid.in

ISSN (Online): 2583-648X

 IJIRID
International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 6 | December 2024

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This
license allows refusers to distribute, remix, adapt, and build upon the material in any medium or format for non-
commercial purposes only, and only so long as attribution is given to the creator. Any further distribution of this
work must maintain attribution to the creators. © copyright at IJIRID. DOI 10.5281/zenodo.14832680 652

• Reduced Operational Complexity: With serverless computing, developers are not burdened with

managing infrastructure components such as servers, load balancers, or databases. This reduces

operational complexity and allows teams to focus more on coding and innovation.

• Improved Security: Since serverless platforms abstract much of the infrastructure, they often

come with built-in security features, such as automatic patching, network isolation, and

encrypted data storage. Security concerns like maintaining servers or handling updates are

minimized.

• Flexibility and Agility: Serverless functions allow developers to work with individual components,

making it easier to build modular applications. This flexibility enables rapid changes and

adaptations as business requirements evolve, fostering greater agility in development processes.

• Better Resource Utilization: Since serverless functions scale automatically based on usage,

resources are used only when needed. This helps ensure that the application is running efficiently,

reducing wasted resources compared to traditional server-based systems.

• Global Reach: Serverless platforms often offer a global infrastructure, allowing serverless

functions to run in multiple regions around the world. This improves application performance and

provides localized services for users in different geographical locations.

• Focus on Business Logic: Developers can concentrate on writing and improving the business logic

of their applications, while the cloud provider handles the infrastructure, scaling, and resource

management. This allows for faster innovation and better user experiences. [10]

VIII. CONCLUSION

This paper presents an in-depth analysis of implementing serverless computing architectures for

scalable and cost-efficient cloud applications. It explores the core concepts, advantages, and

challenges of serverless computing, along with a proposed framework for designing and deploying

serverless architectures. Through thorough experimentation, the study evaluates the performance,

scalability, and cost-effectiveness of serverless architectures across various cloud platforms and

workloads. The findings indicate that serverless architectures offer notable benefits, including

reduced operational overhead, enhanced scalability, and cost savings.

The paper discusses best practices and outlines future research opportunities aimed at overcoming

existing limitations and optimizing the adoption of serverless computing in real-world applications. As

serverless computing evolves, further advancements in orchestration, state management,

performance enhancement, and security are anticipated. In conclusion, serverless computing stands

as a promising approach for developing scalable and cost-effective cloud applications. By leveraging

the advantages of serverless architectures and adhering to best practices, organizations can achieve

greater agility, efficiency, and innovation in cloud-native application development and deployment.

http://www.ijirid.in/

www.ijirid.in

ISSN (Online): 2583-648X

 IJIRID
International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 6 | December 2024

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This
license allows refusers to distribute, remix, adapt, and build upon the material in any medium or format for non-
commercial purposes only, and only so long as attribution is given to the creator. Any further distribution of this
work must maintain attribution to the creators. © copyright at IJIRID. DOI 10.5281/zenodo.14832680 653

REFERENCES
[1] Maciej Malawski et al., “Server Less Execution of Scientific Workflows: Experiments with Hyper Flow, AWS Lambda and

Google Cloud Functions,” Future Generation Computer Systems, vol. 110, pp. 502-514, 2020.

[2] Ioana Baldini et al., “Server Less Computing: Current Trends and Open Problems,” Research Advances in Cloud

Computing, pp. 1-20, 2017.

[3] CNCF Survey 2020, Cloud Native Computing Foundation, 2020. [Online]. Available: https://www.cncf.io/wp-

content/uploads/2020/11/CNCF_Survey_Report_2020.pdf

[4] J. Schiller-Smith et al., “The Server Less Dilemma: Function Composition for Server Less Computing,” Proceedings of

the ACM Symposium on Cloud Computing, pp. 347-362, 2019.

[5] Paul Castro et al., “The Rise of Server Less Computing,” Communications of the ACM, vol. 62, no. 12, pp. 44-54, 2019.

[6] Garrett McGrath, and Paul R. Brenner, “Server Less Computing: Design, Implementation, and Performance,” IEEE 37th

International Conference on Distributed Computing Systems Workshops, Atlanta, GA, USA, pp. 405-410, 2017.

[7] Mohit Sewak, and Sachchidanand Singh, “Winning in the Era of Server Less Computing and Function as a Service,” 3rd

International Conference on Computing for Sustainable Global Development, Pune, India, pp. 1169-1175, 2018.

[8] Johannes Manner et al., “Cold Start Influencing Factors in Function as a Service,” IEEE/ACM International Conference

on Utility and Cloud Computing Companion, Zurich, Switzerland, pp. 181-188, 2018.

[9] Adam Eivy, and Joe Weinman, “Be Wary of the Economics of “Server Less” Cloud Computing,” IEEE Cloud Computing,

vol. 4, no. 2, pp. 6-12, 2017.

[10] Vipul Gupta et al., “Over Sketch: Approximate Matrix Multiplication for the Cloud,” IEEE International Conference on

Big Data, Seattle, WA, USA, pp. 298-304, 2018.

http://www.ijirid.in/

